Condorcet Relaxation In Spatial Voting

Arnold Filtser1 and Omrit Filtser2

1Columbia University \quad 2Stony Brook University

AAAI 2021
Condorcet criterion

Voters V — multiset in a metric space (X, d)

Goal: reach joint a decision — a point in X.

Rule: $v \in V$ “prefer” p over q if $d(p, v) \leq d(q, v)$
Condorcet criterion

Voters V — multiset in a metric space (X, d)

Goal: reach joint a decision — a point in X.

Rule: $v \in V$ “prefer” p over q if $d(p, v) \leq d(q, v)$

Condorcet winner: a point in X who would win a two-candidate election against any other point in a plurality vote.
Condorcet criterion

Voters \(V \) — multiset in a metric space \((X, d) \)

Goal: reach joint a decision — a point in \(X \).

Rule: \(v \in V \) “prefer” \(p \) over \(q \) if \(d(p, v) \leq d(q, v) \)

Condorcet winner: a point in \(X \) who would win a two-candidate election against any other point in a plurality vote.
Spatial voting: Euclidean metric space, i.e. \((\mathbb{R}^d, \| \cdot \|_2)\).
Spatial voting: Euclidean metric space, i.e. \((\mathbb{R}^d, \| \cdot \|_2)\).

- Studied in the political economy context:
 - Black 1948
 - Downs 1957
 - Plott 1967
 - Enelow and Hinich 1983

Example: \(d = 1\) (points on the line) \(\rightarrow\) median always wins!
Spatial voting

Spatial voting: Euclidean metric space, i.e. \((\mathbb{R}^d, \| \cdot \|_2)\).

- Studied in the political economy context:
 - Black 1948
 - Downs 1957
 - Plott 1967
 - Enelow and Hinich 1983

Example: \(d = 1\) (points on the line)
Spatial voting

Spatial voting: Euclidean metric space, i.e. \((\mathbb{R}^d, \| \cdot \|_2)\).

- Studied in the **political economy** context:
 - Black 1948
 - Downs 1957
 - Plott 1967
 - Enelow and Hinich 1983

Example: \(d = 1\) (points on the line) \(\rightarrow\) **median always wins!**
Spatial voting: Euclidean metric space, i.e. \((\mathbb{R}^d, \| \cdot \|_2)\).

- Studied in the **political economy** context:
 - Black 1948
 - Downs 1957
 - Plott 1967
 - Enelow and Hinich 1983

Example: \(d = 1\) (points on the line) \(\rightarrow\) median always wins!
Spatial voting: Euclidean metric space, i.e. \mathbb{R}^d, $\| \cdot \|_2$.

- Studied in the political economy context:
 - Black 1948
 - Downs 1957
 - Plott 1967
 - Enelow and Hinich 1983

Example: $d = 1$ (points on the line) \rightarrow median always wins!
Fact: For $d > 1$, a Condorcet winner rarely exists...
Fact: For $d > 1$, a Condorcet winner rarely exists...
Fact: For $d > 1$, a Condorcet winner rarely exists...
Fact: For $d > 1$, a Condorcet winner rarely exists...
Fact: For $d > 1$, a Condorcet winner rarely exists...
Fact: For $d > 1$, a Condorcet winner rarely exists...
Fact: For $d > 1$, a Condorcet winner rarely exists...
Fact: For $d > 1$, a Condorcet winner rarely exists...

No Condorcet winner!
Relaxing the Condorcet criterion

β - relaxation parameter

Goal: reach a joint decision — a point in X.

Rule: $v \in V$ "β-prefer" p over q if $\beta \cdot d(p, v) \leq d(q, v)$.

β-plurality point for V: $p \in X$ s.t. $\forall q \in X$, at least $|V|/2$ voters "β-prefer" p over q.

[Aronov, de Berg, Gudmundsson, and Horton, SoCG'20]

$\beta = 1 \iff$ a Condorcet winner

Example: $\beta = 5/12$
Relaxing the Condorcet criterion

β - relaxation parameter

Voters V — multiset in a metric space (X, d)

Goal: reach a joint decision — a point in X.

Rule: $v \in V$ “β-prefer” p over q if $\beta \cdot d(p, v) \leq d(q, v)$
Relaxing the Condorcet criterion

\(\beta \) - relaxation parameter

Voters \(V \) — multiset in a metric space \((X, d)\)

Goal: reach a joint decision — a point in \(X \).

Rule: \(v \in V \) \(\beta \)-prefer p over q if \(\beta \cdot d(p, v) \leq d(q, v) \)

\(\beta \)-plurality point for \(V \):
\(p \in X \) s.t. \(\forall q \in X \), at least \(\frac{|V|}{2} \) voters \(\beta \)-prefer p over q.
Relaxing the Condorcet criterion

β - relaxation parameter

Voters V — multiset in a metric space (X, d)

Goal: reach a joint decision — a point in X.

Rule: $v \in V$ “β-prefer” p over q if $\beta \cdot d(p, v) \leq d(q, v)$

β-plurality point for V:

$p \in X$ s.t. $\forall q \in X$, at least $|V|/2$ voters “β-prefer” p over q.

[Aronov, de Berg, Gudmundsson, and Horton, SoCG’20]
Relaxing the Condorcet criterion

\(\beta \) - relaxation parameter

Voters \(V \) — multiset in a metric space \((X, d)\)

Goal: reach a joint decision — a point in \(X \).

Rule: \(v \in V \) “\(\beta \)-prefer” \(p \) over \(q \) if \(\beta \cdot d(p, v) \leq d(q, v) \)

\(\beta \)-plurality point for \(V \):
\(p \in X \) s.t. \(\forall q \in X \), at least \(\frac{|V|}{2} \) voters “\(\beta \)-prefer” \(p \) over \(q \).

[Aronov, de Berg, Gudmundsson, and Horton, SoCG'20]

\[\beta = 1 \iff \text{a Condorcet winner} \]
Relaxing the Condorcet criterion

β - relaxation parameter

Voters V — multiset in a metric space (X, d)

Goal: reach a joint decision — a point in X.

Rule: $v \in V$, β-prefer p over q if $\beta \cdot d(p, v) \leq d(q, v)$

β-plurality point for V:

$p \in X$ s.t. $\forall q \in X$, at least $\frac{|V|}{2}$ voters “β-prefer” p over q.

[Aronov, de Berg, Gudmundsson, and Horton, SoCG’20]

\[\beta = 1 \iff \text{a Condorcet winner} \]

Example: $\beta = \frac{1}{2}$
Relaxing the Condorcet criterion

\(\beta \) - relaxation parameter

Voters \(V \) — multiset in a metric space \((X, d)\)

Goal: reach a joint decision — a point in \(X \).

Rule: \(v \in V \) “\(\beta \)-prefer” \(p \) over \(q \) if \(\beta \cdot d(p, v) \leq d(q, v) \)

\(\beta \)-plurality point for \(V \):
\(p \in X \) s.t. \(\forall q \in X \), at least \(|V|/2 \) voters “\(\beta \)-prefer” \(p \) over \(q \).

[Aronov, de Berg, Gudmundsson, and Horton, SoCG’20]

\[\beta = 1 \iff \text{a Condorcet winner} \]

Example: \(\beta = \frac{1}{2} \)

![Diagram](image-url)
Relaxing the Condorcet criterion

- relaxation parameter

Voters V — multiset in a metric space (X, d)

Goal: reach a joint decision — a point in X.

Rule: $v \in V$ “β-prefer” p over q if $\beta \cdot d(p, v) \leq d(q, v)$

β-plurality point for V:

$p \in X$ s.t. $\forall q \in X$, at least $\frac{|V|}{2}$ voters “β-prefer” p over q.

[Aronov, de Berg, Gudmundsson, and Horton, SoCG'20]

$\beta = 1 \iff$ a Condorcet winner

Example: $\beta = \frac{1}{2}$
Relaxing the Condorcet criterion

β - relaxation parameter

Voters \(V \) — multiset in a metric space \((X, d)\)

Goal: reach a joint decision — a point in \(X \).

Rule: \(v \in V \) "**β**-prefer" \(p \) over \(q \) if \(\beta \cdot d(p, v) \leq d(q, v) \)

β-plurality point for \(V \):

\(p \in X \) s.t. \(\forall q \in X \), at least \(\frac{|V|}{2} \) voters "**β**-prefer" \(p \) over \(q \).

[Aronov, de Berg, Gudmundsson, and Horton, SoCG’20]

\[\beta = 1 \iff \text{a Condorcet winner} \]

Example: \(\beta = \frac{1}{2} \)
The algorithmic question

What is the \textbf{largest} β such that V admits a β-plurality point?

Aronov et al. (2020): EPTAS for computing $\beta(R^d, \|\cdot\|_2)(V)$

β becomes larger \Rightarrow we are “closer” to having a Condorcet winner

Given a metric space (X,d), what β should we expect?

What is the amount of relaxation needed in order to reach a stable decision for any set of voters V in X?
The algorithmic question

What is the largest β such that V admits a β-plurality point?

$$\beta_{(x,d)}(V) = \sup\{\beta \mid V \text{ admits a } \beta\text{-plurality point}\}$$
The algorithmic question

What is the largest β such that V admits a β-plurality point?

$$\beta_{(X,d)}(V) = \sup\{\beta \mid V \text{ admits a } \beta\text{-plurality point}\}$$

Aronov et al. (2020): EPTAS for computing $\beta_{(\mathbb{R}^d,\|\cdot\|_2)}(V)$
The algorithmic question

What is the largest β such that V admits a β-plurality point?

$$\beta_{(X,d)}(V) = \sup\{\beta \mid V \text{ admits a } \beta\text{-plurality point}\}$$

Aronov et al. (2020): EPTAS for computing $\beta_{(\mathbb{R}^d,\|\cdot\|_2)}(V)$

β becomes larger \Rightarrow we are “closer” to having a Condorcet winner
The algorithmic question

What is the largest β such that V admits a β-plurality point?

$$\beta(x,d)(V) = \sup\{\beta \mid V \text{ admits a } \beta\text{-plurality point}\}$$

Aronov et al. (2020): EPTAS for computing $\beta(\mathbb{R}^d,\|\cdot\|_2)(V)$

β becomes larger \Rightarrow we are “closer” to having a Condorcet winner

Given a metric space (X,d), what β should we expect?

What is the amount of relaxation needed in order to reach a stable decision for any set of voters V in X?
The existential question

Given a metric space (X, d):
What is the largest β s.t.
 every multiset V in X admits a β-plurality point?

$\beta^* (X, d) = \sup \{ \beta \mid \text{every finite multiset } V \text{ in } X \text{ admits a } \beta\text{-plurality point} \}$

Aronov et al. (2020):
$\beta^* (\mathbb{R}^2, \| \cdot \|_2) \leq \sqrt{\frac{7}{2}}$
The existential question

Given a metric space (X, d):
What is the largest β s.t.

\[
\text{every multiset } V \text{ in } X \text{ admits a } \beta\text{-plurality point?}
\]

\[
\beta^*(X, d) = \sup\{\beta \mid \text{every finite multiset } V \text{ in } X \text{ admits a } \beta\text{-plurality point}\}
\]

Aronov et al. (2020):

$\beta^*(\mathbb{R}^2, \|\cdot\|_2) \leq \sqrt{\frac{3}{2}}$: When V is an equilateral triangle,

$\beta(\mathbb{R}^2, \|\cdot\|_2)(V) \leq \sqrt{\frac{3}{2}}$.

\[\frac{7}{12}\]
The existential question

Given a metric space \((X,d)\):
What is the largest \(\beta\) s.t.
\(\text{every multiset } V \text{ in } X \text{ admits a } \beta\text{-plurality point?}\)

\[
\beta^*(X,d) = \sup\{\beta \mid \text{every finite multiset } V \text{ in } X \text{ admits a } \beta\text{-plurality point}\}
\]

Aronov et al. (2020):
\(\beta^*(\mathbb{R}^2,\|\cdot\|_2) \leq \frac{\sqrt{3}}{2}\)
The existential question

Given a metric space \((X, d)\):
What is the \textbf{largest} \(\beta\) s.t.

\[
\text{every multiset } V \text{ in } X \text{ admits a } \beta\text{-plurality point?}
\]

\[
\beta^*(X,d) = \sup\{\beta \mid \text{every finite multiset } V \text{ in } X \text{ admits a } \beta\text{-plurality point}\}
\]

Aronov et al. (2020):

\(\beta^*_2 \leq \frac{\sqrt{3}}{2}\): When \(V\) is an equilateral triangle, \(\beta_2(V) \leq \frac{\sqrt{3}}{2}\)
The existential question

Given a metric space \((X, d)\):
What is the largest \(\beta\) s.t.

\[
\text{every multiset } V \text{ in } X \text{ admits a } \beta\text{-plurality point?}
\]

\[
\beta^*(X,d) = \sup\{\beta \mid \text{every finite multiset } V \text{ in } X \text{ admits a } \beta\text{-plurality point}\}
\]

Aronov et al. (2020):

\[
\beta^*(\mathbb{R}^2, \|\cdot\|_2) \leq \frac{\sqrt{3}}{2}: \text{When } V \text{ is an equilateral triangle, } \beta^*(\mathbb{R}^2, \|\cdot\|_2)(V) \leq \frac{\sqrt{3}}{2}
\]

\[
\beta^*(\mathbb{R}^2, \|\cdot\|_2) \geq \frac{\sqrt{3}}{2}: \text{For every } V \text{ in } \mathbb{R}^2, \text{ there exists a } \frac{\sqrt{3}}{2}\text{-plurality point.}
\]
The existential question

Given a metric space \((X, d)\):
What is the largest \(\beta\) s.t.

every multiset \(V\) in \(X\) admits a \(\beta\)-plurality point?

\[
\beta^*_{(X,d)} = \sup\{\beta \mid \text{every finite multiset } V \text{ in } X \text{ admits a } \beta\text{-plurality point}\}
\]

Aronov et al. (2020):

- \(\beta^*_{(\mathbb{R}^2, \|\cdot\|_2)} \leq \frac{\sqrt{3}}{2}\): When \(V\) is an equilateral triangle, \(\beta_{(\mathbb{R}^2, \|\cdot\|_2)}(V) \leq \frac{\sqrt{3}}{2}\)

- \(\beta^*_{(\mathbb{R}^2, \|\cdot\|_2)} \geq \frac{\sqrt{3}}{2}\): For every \(V\) in \(\mathbb{R}^2\), there exists a \(\frac{\sqrt{3}}{2}\)-plurality point.

- \(\beta^*_{(\mathbb{R}^d, \|\cdot\|_2)} \geq \frac{1}{\sqrt{d}}\): For every \(V\) in \(\mathbb{R}^d\), there exists a \(\frac{1}{\sqrt{d}}\)-plurality point.
Results

Aronov et al. (2020):

- $\beta^*_{(\mathbb{R}^2, \| \cdot \|_2)} = \frac{\sqrt{3}}{2}$

- $\beta^*_{(\mathbb{R}^d, \| \cdot \|_2)} \in \left[\frac{1}{\sqrt{d}}, \frac{\sqrt{3}}{2} \right]$
Aronov et al. (2020):

\[\beta^{*}_{(\mathbb{R}^{2}, \|\cdot\|_{2})} = \frac{\sqrt{3}}{2} \]

\[\beta^{*}_{(\mathbb{R}^{d}, \|\cdot\|_{2})} \in \left[\frac{1}{\sqrt{d}}, \frac{\sqrt{3}}{2} \right] \]

Our results:

- Spatial voting: \[\beta^{*}_{(\mathbb{R}^{d}, \|\cdot\|_{2})} > 0.557 \rightarrow \text{constant!} \]
Results

Aronov et al. (2020):

- $\beta^*_{(\mathbb{R}^2, \|\cdot\|_2)} = \frac{\sqrt{3}}{2}$
- $\beta^*_{(\mathbb{R}^d, \|\cdot\|_2)} \in \left[\frac{1}{\sqrt{d}}, \frac{\sqrt{3}}{2}\right]$

Our results:

- Spatial voting: $\beta^*_{(\mathbb{R}^d, \|\cdot\|_2)} > 0.557 \rightarrow \text{constant!}$

 For $d \geq 4$: $0.577 > \frac{1}{\sqrt{d}} \Rightarrow \beta^*_{(\mathbb{R}^d, \|\cdot\|_2)} \in (0.557, \frac{\sqrt{3}}{2}]$
Results

Aronov et al. (2020):

- $\beta^*(\mathbb{R}^2, \|\cdot\|_2) = \frac{\sqrt{3}}{2}$
- $\beta^*(\mathbb{R}^d, \|\cdot\|_2) \in \left[\frac{1}{\sqrt{d}}, \frac{\sqrt{3}}{2}\right]$

Our results:

- Spatial voting: $\beta^*(\mathbb{R}^d, \|\cdot\|_2) > 0.557 \rightarrow$ constant!
- For $d \geq 4$: $0.577 > \frac{1}{\sqrt{d}} \Rightarrow \beta^*(\mathbb{R}^d, \|\cdot\|_2) \in (0.557, \frac{\sqrt{3}}{2}]$
- Actually, for every metric space: $\beta^*(\mathcal{X}, d) \geq \sqrt{2} - 1$
Results

Aronov et al. (2020):

- $\beta^*_{(\mathbb{R}^2, \|\cdot\|_2)} = \frac{\sqrt{3}}{2}$
- $\beta^*_{(\mathbb{R}^d, \|\cdot\|_2)} \in \left[\frac{1}{\sqrt{d}}, \frac{\sqrt{3}}{2} \right]$

Our results:

- Spatial voting: $\beta^*_{(\mathbb{R}^d, \|\cdot\|_2)} > 0.557 \rightarrow \text{constant!}$

 For $d \geq 4$: $0.577 > \frac{1}{\sqrt{d}} \Rightarrow \beta^*_{(\mathbb{R}^d, \|\cdot\|_2)} \in (0.557, \frac{\sqrt{3}}{2}]$

- Actually, for every metric space: $\beta^*_{(X, d)} \geq \sqrt{2} - 1$

- Also, there exist a metric space with $\beta^*_{(X, d)} \leq \frac{1}{2}$
General metric spaces

How small can $\beta^*(X, d)$ be?

$$\beta^* = \inf \left\{ \beta^*(X, d) \mid (X, d) \text{ is a metric space} \right\}$$
General metric spaces

How small can $\beta^{*}(X,d)$ be?

$$\beta^{*} = \inf \left\{ \beta^{*}(X,d) \mid (X,d) \text{ is a metric space} \right\}$$

Theorem 1: β^{*} is at least $\sqrt{2} - 1$
General metric spaces

How small can $\beta^*(X,d)$ be?

$$\beta^* = \inf \left\{ \beta^*(X,d) \mid (X,d) \text{ is a metric space} \right\}$$

Theorem 1: β^* is at least $\sqrt{2} - 1$

Theorem 2: β^* is at most $\frac{1}{2}$
General metric spaces

How small can $\beta^*(X,d)$ be?

$$\beta^* = \inf \left\{ \beta^*(X,d) \mid (X,d) \text{ is a metric space} \right\}$$

Theorem 1: β^* is at least $\sqrt{2} - 1$

Theorem 2: β^* is at most $\frac{1}{2}$

$$\Rightarrow \beta^* \in [\sqrt{2} - 1, \frac{1}{2}]$$
Theorem 1: \(\beta^* \) is at least \(\sqrt{2} - 1 \)

For every \((X, d)\) and \(V\) in \(X\), there exists a \(\sqrt{2} - 1 \)-plurality point.
Theorem 1: β^* is at least $\sqrt{2} - 1$

For every (X, d) and V in X, there exists a $\sqrt{2} - 1$-plurality point.

p - some point in X \hspace{1cm} R_p - minimum radius s.t. $B(p, R_p)$ contains $\geq \frac{|V|}{2}$ voters.
Theorem 1: β^* is at least $\sqrt{2} - 1$

For every (X, d) and V in X, there exists a $\sqrt{2} - 1$-plurality point.

p - some point in X
R_p - minimum radius s.t. $B(p, R_p)$ contains $\geq \frac{|V|}{2}$ voters.

p^* - point in X with the smallest R_{p^*}

$$\beta = \sqrt{2} - 1$$

$$B(p^*, R_{p^*}) \geq \frac{|V|}{2} \text{ voters}$$
Theorem 1: β^* is at least $\sqrt{2} - 1$

For every (X, d) and V in X, there exists a $\sqrt{2} - 1$-plurality point.

p - some point in X \hspace{1cm} R_p - minimum radius s.t. $B(p, R_p)$ contains $\geq \frac{|V|}{2}$ voters.

p^* - point in X with the smallest R_{p^*}

Claim: p^* is a $\sqrt{2} - 1$-plurality point.

\[
\beta = \sqrt{2} - 1
\]

\[
B(p^*, R_{p^*}) \geq \frac{|V|}{2} \text{ voters}
\]
Theorem 1: β^* is at least $\sqrt{2} - 1$

For every (X, d) and V in X, there exists a $\sqrt{2} - 1$-plurality point.

p - some point in X \hspace{1cm} R_p - minimum radius s.t. $B(p, R_p)$ contains $\geq \frac{|V|}{2}$ voters.

p^* - point in X with the smallest R_p.

Claim: p^* is a $\sqrt{2} - 1$-plurality point.
Theorem 1: β^* is at least $\sqrt{2} - 1$

For every (X, d) and V in X, there exists a $\sqrt{2} - 1$-plurality point.

p - some point in X
R_p - minimum radius s.t. $B(p, R_p)$ contains $\geq \frac{|V|}{2}$ voters.

p^* - point in X with the smallest R_p^*

Claim: p^* is a $\sqrt{2} - 1$-plurality point.

$\beta = \sqrt{2} - 1$

$B(p^*, R_p^*)$ contains $\geq \frac{|V|}{2}$ voters

$\hat{B}(q, R_q)$ contains $< \frac{|V|}{2}$ voters

$R_q \geq R_p^*$
Theorem 1: β^* is at least $\sqrt{2} - 1$

For every (X, d) and V in X, there exists a $\sqrt{2} - 1$-plurality point.

p - some point in X \hspace{1cm} R_p - minimum radius s.t. $B(p, R_p)$ contains $\geq \frac{|V|}{2}$ voters.

p^* - point in X with the smallest R_{p^*}

Claim: p^* is a $\sqrt{2} - 1$-plurality point.
Theorem 1: β^* is at least $\sqrt{2} - 1$

For every (X, d) and V in X, there exists a $\sqrt{2} - 1$-plurality point.

p - some point in X
p^* - point in X with the smallest R_p^*

Claim: p^* is a $\sqrt{2} - 1$-plurality point.

\[\beta = \sqrt{2} - 1 \]

\[d(v, q) \geq \beta \cdot d(v, p^*) \]

\[R_q \geq R_p^* \]

\[d(p^*, q) \geq \sqrt{2} \cdot R_p^* \Rightarrow \text{every } v \in B(p^*, R_p^*) \beta\text{-prefer } p^* \text{ over } q. \]
Theorem 1: β^* is at least $\sqrt{2} - 1$

For every (X, d) and V in X, there exists a $\sqrt{2} - 1$-plurality point.

- p - some point in X
- R_p - minimum radius s.t. $B(p, R_p)$ contains $\geq \frac{|V|}{2}$ voters.
- p^* - point in X with the smallest R_p^*

Claim: p^* is a $\sqrt{2} - 1$-plurality point.
Theorem 1: β^* is at least $\sqrt{2} - 1$

For every (X, d) and V in X, there exists a $\sqrt{2} - 1$-plurality point.

p - some point in X
R_p - minimum radius s.t. $B(p, R_p)$ contains $\geq \frac{|V|}{2}$ voters.

p^* - point in X with the smallest R_p^*

Claim: p^* is a $\sqrt{2} - 1$-plurality point.
Theorem 2: $\beta^* \leq \frac{1}{2}$

There exists (X, d) and V in X, s.t. there is no β-plurality point for any $\beta > \frac{1}{2}$
Theorem 2: β^* is at most $\frac{1}{2}$

There exists (X, d) and V in X, s.t. there is no β-plurality point for any $\beta > \frac{1}{2}$

Metric space: C cycle of length 1, shortest path distance.
Theorem 2: β^* is at most $\frac{1}{2}$

There exists (X, d) and V in X, s.t. there is no β-plurality point for any $\beta > \frac{1}{2}$

Metric space: C cycle of length 1, shortest path distance.
Theorem 2: β^* is at most $\frac{1}{2}$

There exists (X, d) and V in X, s.t. there is no β-plurality point for any $\beta > \frac{1}{2}$

Metric space: C cycle of length 1, shortest path distance.

Assume $\beta > \frac{1}{2}$
Theorem 2: β^* is at most $\frac{1}{2}$

There exists (X, d) and V in X, s.t. there is no β-plurality point for any $\beta > \frac{1}{2}$

Metric space: C cycle of length 1, shortest path distance.

Assume $\beta > \frac{1}{2}$
Theorem 2: β^* is at most $\frac{1}{2}$

There exists (X, d) and V in X, s.t. there is no β-plurality point for any $\beta > \frac{1}{2}$

Metric space: C cycle of length 1, shortest path distance.

Assume $\beta > \frac{1}{2}$

\[
\begin{align*}
 v_1 &= 0 \\
 v_2 &= \frac{1}{3} \\
 v_3 &= \frac{2}{3} \\
 p &= \alpha \in [0, \frac{1}{6}] \\
 q &= \frac{1}{2} - \frac{\alpha}{2}
\end{align*}
\]
Theorem 2: β^* is at most $\frac{1}{2}$

There exists (X, d) and V in X, s.t. there is no β-plurality point for any $\beta > \frac{1}{2}$

Metric space: C cycle of length 1, shortest path distance.

Assume $\beta > \frac{1}{2}$

\[
\beta \cdot \left(\frac{1}{3} - \alpha\right) > \frac{1}{6} + \frac{\alpha}{2}
\]

\[
\frac{1}{6} - \frac{\alpha}{2} < \beta \cdot \left(\frac{1}{3} - \alpha\right)
\]

\[
p = \alpha \in [0, \frac{1}{6}]
\]

\[
v_1 = 0
\]

\[
v_2 = \frac{1}{3}
\]

\[
v_3 = \frac{2}{3}
\]

\[
q = \frac{1}{2} - \frac{\alpha}{2}
\]

\[
\frac{5}{6}
\]

\[
\frac{1}{6}
\]
Theorem 2: β^* is at most $\frac{1}{2}$

There exists (X, d) and V in X, s.t. there is no β-plurality point for any $\beta > \frac{1}{2}$

Metric space: C cycle of length 1, shortest path distance.

Assume $\beta > \frac{1}{2}$

$$\beta \cdot \left(\frac{1}{3} - \alpha\right) > \frac{1}{6} + \frac{\alpha}{2}$$

$\frac{1}{2} = q = \frac{1}{2} - \frac{\alpha}{2}$

$\frac{1}{6} - \frac{\alpha}{2} < \beta \cdot \left(\frac{1}{3} - \alpha\right)$

*Actually, for this metric space $\beta^*_{(X,d)} = \frac{1}{2}$*
Conclusion and open questions

We show:

- $\beta^* \in [\sqrt{2} - 1, \frac{1}{2}]$
- $\beta^*(\mathbb{R}^d, \|\cdot\|_2) \in (0.557, \frac{\sqrt{3}}{2}]$

Main open question:

closing these two gaps.

Why?
The equilateral triangle is probably the worst case example. A plurality point must "win" $\frac{2}{3}$ of the votes.

Conclusion: If indeed $\beta^*(\mathbb{R}^d, \|\cdot\|_2) = \frac{\sqrt{3}}{2}$, then the amount of "compromise" that we need to make in order to find a "winner" is relatively small.
Conclusion and open questions

We show:

- $\beta^* \in [\sqrt{2} - 1, \frac{1}{2}]$
- $\beta^*(\mathbb{R}^d, \|\cdot\|_2) \in (0.557, \frac{\sqrt{3}}{2}]$

Main open question:

closing these two gaps.

Conjecture:

- $\beta^* = \frac{1}{2}$
- $\beta^*(\mathbb{R}^d, \|\cdot\|_2) = \frac{\sqrt{3}}{2}$ for $d \geq 2$

Why? The equilateral triangle is probably the worst case example.

A plurality point must "win" $\frac{2}{3}$ of the votes:
Conclusion and open questions

We show:

▶ $\beta^* \in [\sqrt{2} - 1, \frac{1}{2}]$

▶ $\beta^*_{(\mathbb{R}^d, \|\cdot\|_2)} \in (0.557, \frac{\sqrt{3}}{2}]$

Main open question:

closing these two gaps.

Conjecture:

▶ $\beta^* = \frac{1}{2}$

▶ $\beta^*_{(\mathbb{R}^d, \|\cdot\|_2)} = \frac{\sqrt{3}}{2}$ for $d \geq 2$

Why? The equilateral triangle is probably the worst case example.

A plurality point must “win” $\frac{2}{3}$ of the votes:

Conclusion: If indeed $\beta^*_{(\mathbb{R}^d, \|\cdot\|_2)} = \frac{\sqrt{3}}{2} \approx 0.866$ then the amount of “compromise” that we need to make in order to find a “winner” is relatively small.
Conclusion and open questions

We show:

- $\beta^* \in [\sqrt{2} - 1, \frac{1}{2}]$
- $\beta^*_{(\mathbb{R}^d, \|\cdot\|_2)} \in (0.557, \frac{\sqrt{3}}{2}]$

Main open question: closing these two gaps.

Conjecture:

- $\beta^* = \frac{1}{2}$
- $\beta^*_{(\mathbb{R}^d, \|\cdot\|_2)} = \frac{\sqrt{3}}{2}$ for $d \geq 2$

Why? The equilateral triangle is probably the worst case example.

A plurality point must "win" $\frac{2}{3}$ of the votes:

Conclusion: If indeed $\beta^*_{(\mathbb{R}^d, \|\cdot\|_2)} = \frac{\sqrt{3}}{2} \approx 0.866$ then the amount of "compromise" that we need to make in order to find a "finder" is relatively small.

Thank You!