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Condorcet criterion

Voters V — multiset in a metric space (X , d)
Goal: reach joint a decision — a point in X .
Rule: v ∈ V “prefer” p over q if d(p, v) ≤ d(q, v)

Condorcet winner: a point in X who would win a
two-candidate election against any other point in a
plurality vote.

RightLeft

Authoritarian

Libertarian
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Spatial voting

Spatial voting: Euclidean metric space, i.e. (Rd , ‖ · ‖2).

I Studied in the political economy context:
Black 1948
Downs 1957
Plott 1967

Enelow and Hinich 1983

RightLeft

Authoritarian

Libertarian

Example: d = 1 (points on the line)

→ median always wins!
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Fact: For d > 1, a Condorcet winner rarely exists...

No Condorcet winner!

4 / 12



Fact: For d > 1, a Condorcet winner rarely exists...

No Condorcet winner!

4 / 12



Fact: For d > 1, a Condorcet winner rarely exists...

No Condorcet winner!

4 / 12



Fact: For d > 1, a Condorcet winner rarely exists...

No Condorcet winner!

4 / 12



Fact: For d > 1, a Condorcet winner rarely exists...

No Condorcet winner!

4 / 12



Fact: For d > 1, a Condorcet winner rarely exists...

No Condorcet winner!

4 / 12



Fact: For d > 1, a Condorcet winner rarely exists...

No Condorcet winner!

4 / 12



Fact: For d > 1, a Condorcet winner rarely exists...

No Condorcet winner!

4 / 12



Relaxing the Condorcet criterion

β - relaxation parameter

Voters V — multiset in a metric space (X , d)
Goal: reach a joint decision — a point in X .

Rule: v ∈ V “β-prefer” p over q if β · d(p, v) ≤ d(q, v)

β-plurality point for V :

p ∈ X s.t. ∀q ∈ X , at least |V |2 voters “β-prefer” p over q.

[Aronov, de Berg, Gudmundsson, and Horton, SoCG’20]

β = 1 ⇔ a Condorcet winner

Example: β = 1
2
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The algorithmic question

What is the largest β such that V admits a β-plurality point?

β(X ,d)(V ) = sup{β | V admits a β-plurality point}

Aronov et al. (2020): EPTAS for computing β(Rd ,‖·‖2)(V )

β becomes larger ⇒ we are “closer” to having a Condorcet winner

Given a metric space (X , d), what β should we expect?

What is the amount of relaxation needed in order to
reach a stable decision for any set of voters V in X?
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The existential question

Given a metric space (X , d):
What is the largest β s.t.

every multiset V in X admits a β-plurality point?

β∗(X ,d) = sup{β | every finite multiset V in X admits a β-plurality point}

Aronov et al. (2020):

I β∗(R2,‖·‖2)
≤
√
3
2

: When V is an equilateral triangle, β(R2,‖·‖2)(V ) ≤
√
3
2
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Results

Aronov et al. (2020):

I β∗(R2,‖·‖2)
=
√
3
2

I β∗(Rd ,‖·‖2)
∈ [ 1√

d
,
√
3
2 ]

Our results:

I Spatial voting: β∗(Rd ,‖·‖2) > 0.557 → constant!

For d ≥ 4: 0.577 > 1√
d
⇒ β∗(Rd ,‖·‖2)

∈ (0.557,
√
3
2 ]

I Actually, for every metric space: β∗(X ,d) ≥
√

2− 1

I Also, there exist a metric space with β∗(X ,d) ≤
1
2
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General metric spaces

How small can β∗(X ,d) be?

β∗ = inf
{
β∗(X ,d) | (X , d) is a metric space

}

Theorem 1: β∗ is at least
√
2− 1

Theorem 2: β∗ is at most 1
2

⇒ β∗ ∈ [
√

2− 1, 12 ]
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Theorem 1: β∗ is at least
√
2− 1

For every (X , d) and V in X , there exists a
√

2− 1-plurality point.

p - some point in X Rp - minimum radius s.t. B(p,Rp) contains ≥ |V |2 voters.

p∗ - point in X with the smallest Rp∗

Claim: p∗ is a
√

2− 1-plurality point.
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Theorem 2: β∗ is at most 1
2

There exists (X , d) and V in X , s.t. there is no β-plurality point for any β > 1
2

Metric space: C cycle of length 1, shortest path distance.

Assume β > 1
2

*Actually, for this metric space β∗
(X ,d) =

1
2
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Conclusion and open questions

We show:

I β∗ ∈ [
√

2− 1, 12 ]

I β∗(Rd ,‖·‖2) ∈ (0.557,
√
3
2 ]

Main open question:
closing these two gaps.

Conjecture:

I β∗ = 1
2

I β∗(Rd ,‖·‖2) =
√
3
2 for d ≥ 2

Why? The equilateral triangle is probably the worst
case example.

A plurality point must
“win” 2

3 of the votes:

Conclusion: If indeed β∗(Rd ,‖·‖2) =
√
3
2 ≈ 0.866 then the amount of “compromise” that we need

to make in order to find a “winner” is relatively small.

Thank You!
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