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Fact: For d > 1, a Condorcet winner rarely exists...

No Condorcet winner!
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What is the largest 3 such that V admits a S-plurality point? .

Bix,ay(V) = sup{B | V admits a (-plurality point}
Aronov et al. (2020): EPTAS for computing B(gq,.,)(V) ORI

B becomes larger = we are “closer” to having a Condorcet winner

Given a metric space (X, d), what 3 should we expect?

What is the amount of relaxation needed in order to
reach a stable decision for any set of voters V in X?
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