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Introduction Fréchet Distance

Similarity of curevs

To what extent the two given curves resemble each other?

Applications:
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Introduction Fréchet Distance

How to compare curves?

What distance measure between curves should be used?

I Hausdorff distance.
dH = max{sup

a∈A
inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}

× Only takes into account the sets of points but
not the ordering.

X Fréchet distance.
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Introduction Fréchet Distance

The (continuous) Fréchet distance

A person and a dog connected by a leash of length δ.
They walk along the curves A and B, respectively, no backtracking.

I The Fréchet distance (dF (A,B)) is the minimum δ that is sufficient
for traversing both curves in this manner.

δ
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Introduction Fréchet Distance

The discrete Fréchet distance

Two sequences of points, A = (a1, ..., an) and B = (b1, ..., bm).
Two frogs, the A-frog and the B-frog, connected by a leash of length δ,
hopping along their respective sequences.

I The discrete Fréchet distance (ddF (A,B)) is the minimum δ that
allows the frogs to reach an and bm.

I A good approximation of the continuous distance.

I Makes more sense in some situations (computational biology).

δ
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Two sequences of points, A = (a1, ..., an) and B = (b1, ..., bm).
Two frogs, the A-frog and the B-frog, connected by a leash of length δ,
hopping along their respective sequences.
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Introduction Fréchet Distance

Related work

I Eiter and Mannila (’94) showed that ddF (A,B) can be computed in
O(n2) time.

I Agarwal et al. (’13) showed how to compute ddF (A,B) in

O

(
n2 log log n

log n

)
time.

I Bringmann and Mulzer (’15) presented a conditional lower bound
that strongly subquadratic algorithms for the discrete Fréchet
distance are unlikely to exist, even in the one-dimensional case and
even if the solution may be approximated up to a factor of 1.399.

6 / 54



Introduction Variants of Fréchet distance

Handling outliers

Physical sensors, such as GPS, may generate inaccurate measurements,
which we refer to as outliers.

I The Fréchet distance and the discrete Fréchet distance are sensitive
to outliers.

δ
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Introduction Variants of Fréchet distance

Handling outliers

How to reduce sensitivity to outliers?

Take shortcuts!

I Allow the A-frog or the B-frog (or both) to “ignore” subcurves or
points which might be considered as noise.

δ

8 / 54



Introduction Variants of Fréchet distance
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Introduction Variants of Fréchet distance

The one-sided discrete Fréchet distance with shortcuts

A = (a1, ..., an), B = (b1, ..., bm), a leash of length δ.
Only the A-frog can skip points.

I The one-sided discrete Fréchet distance with shortcuts is the
minimum such δ that allows the frogs to reach am and bn.

δ
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Introduction Variants of Fréchet distance

The weak discrete Fréchet distance

A = (a1, ..., an), B = (b1, ..., bm), a leash of length δ.
The frogs are also allowed to jump (one step) backwards.

I The weak discrete Fréchet distance is the minimum such δ that
allows the frogs to reach am and bn.
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The weak discrete Fréchet distance
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I The weak discrete Fréchet distance is the minimum such δ that
allows the frogs to reach am and bn.

δ

10 / 54



Introduction Variants of Fréchet distance
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Introduction Variants of Fréchet distance

Fréchet under translation

The input curves are not necessarily aligned,
and one of them needs to be adjusted.

I Given A = (a1, ..., an), B = (b1, ..., bm), find a translation t that
minimizes the discrete Fréchet distance between A and B + t.

δ
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Introduction Variants of Fréchet distance

Related work

Continuous Fréchet distance under translation:

I Alt et al. (’01): O(m3n3(m + n)2 log(m + n))-time algorithm for
points in 2D, and an algorithm computing a (1 + ε)-approximation in
O(ε−2mn) time.

I Wenk (’03): O((m + n)11 log(m + n))-time algorithm for points in
3D (general results for d dimensions and other families of
transformations).
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Introduction Variants of Fréchet distance

Related work

Discrete Fréchet distance under translation:

I Mosig et al. (’05): O(m2n2)-time approximation algorithm for DFD
under translation, rotation and scaling in 2D, with approximation
factor close to 2.

I Jiang et al. (’08): O(m3n3 log(m + n))-time algorithm for DFD
under translation, and an O(m4n4 log(m + n))-time algorithm when
both rotations and translations are allowed.

I Ben Avraham et al. (’15): O(m3n2(1 + log( n
m )) log(m + n))-time

algorithm, based on a dynamic data structure which supports updates
and reachability queries in O(m(1 + log(n/m)) time (up next).
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Introduction Preliminaries

The positions graph

G = G (V = A× B,E = EA ∪ EB ∪ EAB)
I V : all possible positions of the frogs.
I E : all possible moves between positions.

a1

a2

a3

a4

a5

b1 b2 b3 b4 b5

EA = {〈(ai, bj), (ai+1, bj)〉}

EB = {〈(ai, bj), (ai, bj+1)〉}

EAB = {〈(ai, bj), (ai+1, bj+1)〉}

Sequence of moves (with unlimited leash length) ⇐⇒
A path in G from (a1, b1) to (an, bm).
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Introduction Preliminaries

The indicator function

When the leash is short — not all positions in A× B are valid.

I indicator function σ : A× B → {0, 1}.

(ai , bj) is a reachable position (w.r.t. σ), if there exists a path P in G
from (a1, b1) to (ai , bj), consisting of only valid positions.

a1

a2

a3

a4

a5

b1 b2 b3 b4 b5
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Introduction Preliminaries

Discrete Fréchet distance

Let d(ai , bj) denote the Euclidean distance between ai and bj .

Our indicator function: given a distance δ ≥ 0,

σδ(ai , bj) =

{
1, d(ai , bj) ≤ δ
0, otherwise

The discrete Fréchet distance ddF (A,B) is the smallest δ ≥ 0 for which
(an, bm) is a reachable position w.r.t. σδ.

16 / 54



Introduction Preliminaries

One-sided shortcuts

(ai , bj) is an s-reachable position (w.r.t. σ), if there exists a path P in G
from (a1, b1) to (ai , bj), such that:

I σ(a1, b1) = 1 and σ(ai , bj) = 1.

I For each bl , 1 < l < j , there exists a position (ak , bl) ∈ P that is
valid (i.e., σ(ak , bl) = 1).

a1

a2

a3

a4

a5

b1 b2 b3 b4 b5

1 1

111

11

1

11

1

11

0

0

0

0

0 0

10

11

01

The discrete Fréchet distance with shortcuts d s
dF (A,B) is the smallest

δ ≥ 0 for which (an, bm) is an s-reachable position w.r.t. σδ.
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Introduction Preliminaries

Weak Fréchet distance

Backtracking is allowed!
Remove the directions from G , a new graph: Gw = G (V = A× B,Ew )

I Ew = {(u, v)|〈u, v〉 ∈ EA ∪ EB ∪ EAB}

(ai , bj) is a w-reachable position (w.r.t. σ), if there exists a path P in
Gw from (a1, b1) to (ai , bj) consisting of only valid positions.

a1

a2

a3

a4

a5

b1 b2 b3 b4 b5

The weak discrete Fréchet distance dw
dF (A,B) is the smallest δ ≥ 0 for

which (an, bm) is a w-reachable position w.r.t. σδ.
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Introduction Preliminaries

The translation problem

Given two sequences of points A = (a1, ..., an) and B = (b1, ..., bm),
find a translation t∗ that minimizes ddF (A,B + t) over all translations t.

Denote:
d̂dF (A,B) = mint{ddF (A,B + t)}
d̂ s
dF (A,B) = mint{d s

dF (A,B + t)}
d̂w
dF (A,B) = mint{dw

dF (A,B + t)}
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DFDS under translation The algorithm of BKS

The algorithm of Ben Avaraham, Kaplan, and Sharir

I Ben Avraham et al. (’15): O(m3n2(1 + log( n
m )) log(m + n))-time

algorithm for the discrete Fréchet distance under translation, based
on a dynamic data structure which supports updates and reachability
queries in O(m(1 + log(n/m)) time.

STEP 1: Build a dynamic data structure for (discrete Fréchet)
reachability queries.

Given sequences A and B and an indicator function σ:

I The dynamic data structure is constructed in O(mn) time.
I Allows the following operations in O(m(1 + log(n/m))) time:

I Reachability query: return TRUE if and only if (an, bm) is a reachable
position w.r.t. σ.

I A single change in σ: switch σ(ai , bj) from 1 to 0 or vice versa.
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DFDS under translation The algorithm of BKS

STEP 2: The decision problem: given a distance δ, is there a translation
t such that ddF (A,B + t) ≤ δ?

I Given a ∈ A, b ∈ B, consider the disk Dδ(a− b) of radius δ centered

at a− b:

t ∈ Dδ(a− b) ⇔ d(a− b, t) ≤ δ ⇔ d(a, b + t) ≤ δ.
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I Construct the arrangement Aδ of the disks in
{Dδ(a− b) | (a, b) ∈ A× B} — it has O(m2n2) cells.

I Initialize a dynamic data structure for (discrete Fréchet)
reachability queries.

I Traverse the cells of Aδ: when moving between neighboring cells,
the data structure is updated and queried in O(m(1 + log(n/m)) time.

STEP 3: Use parametric search in order to find an optimal translation
(adds only a O(log(m + n)) factor to the running time).
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DFDS under translation The algorithm of BKS

Other variants of DFD

An efficient dynamic data structure for other variants of DFD?

I WDFD: dynamic reachability in an undirected planar graph.
I Eppstein et al. (’92): updates and reachability queries in an

undirected planar graph in O(log |V |) time per operation.

I DFDS: reachability by shortcut paths — an s-path consists of both
valid and non-valid positions, and not every path in G is an s-path.

Build a graph of s-paths!
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DFDS under translation A dynamic data structure for DFDS

(partial) s-paths

A path P in Gδ from (ai , bj) to (ai ′ , bj ′), i ≤ i ′, j ≤ j ′, is a partial s-path,
if for each bl , j ≤ l < j ′, there exists a position (ak , bl) ∈ P that is valid
(i.e., σδ(ak , bl) = 1).

0

0

1

11

11 0

0

01

0

A path P in Gδ from (ai , bj) to (ai ′ , bj ′), i ≤ i ′, j ≤ j ′, is an s-path, if it is
a partial s-path and also σδ(ai , bj) = σδ(ai ′ , bj ′) = 1.
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DFDS under translation A dynamic data structure for DFDS

The graph of (partial) s-paths

Consider Gδ = G (V = A× B,E = E ′A ∪ E ′B)
E ′A = {〈(ai , bj), (ai+1, bj)〉 | σδ(ai , bj) = 0}
E ′B = {〈(ai , bj), (ai , bj+1)〉 | σδ(ai , bj) = 1}

a1
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a5

b1 b2 b3 b4 b5
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0 0 0 0 0 0
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DFDS under translation A dynamic data structure for DFDS

Properties of Gδ

a1

a2

a3

a4

a5

b1 b2 b3 b4 b5
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0

0

0

0

0

1

0 0 0 0

0

0
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1

0

1

1

0

0

1
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0110 0

0 001

001

1 10

1 10

0 01

a6

a7

b6 b7

Property 1

All the paths in Gδ are partial s-paths.

Property 2

Gδ is a set of rooted binary trees
(where the root is a vertex of out-degree 0).
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DFDS under translation A dynamic data structure for DFDS

Lemma

(an, bm) is an s-reachable position in G w.r.t. σδ, if and only if

I σδ(a1, b1) = 1 and σδ(an, bm) = 1.

I The root of (a1, b1) in Gδ is (ai , bm), for some 1 ≤ i ≤ n.

Proof.

26 / 54



DFDS under translation A dynamic data structure for DFDS

Lemma

(an, bm) is an s-reachable position in G w.r.t. σδ, if and only if

I σδ(a1, b1) = 1 and σδ(an, bm) = 1.

I The root of (a1, b1) in Gδ is (ai , bm), for some 1 ≤ i ≤ n.

Proof.

⇐: By Property 1.

26 / 54



DFDS under translation A dynamic data structure for DFDS

Lemma

(an, bm) is an s-reachable position in G w.r.t. σδ, if and only if

I σδ(a1, b1) = 1 and σδ(an, bm) = 1.

I The root of (a1, b1) in Gδ is (ai , bm), for some 1 ≤ i ≤ n.

Proof.

⇐: By Property 1.
⇒: Clearly, σδ(a1, b1) = 1 and σδ(an, bm) = 1,

Let P be an s-path in G from (a1, b1) to (an, bm).

Let P ′ be the path in Gδ from (a1, b1) to its root.

P ′ is always not above P: if a position (ai , bj) is an s-reachable
position in G , then there exists a position (ai ′ , bj) ∈ P ′, i ′ ≤ i , such
that σδ(ai ′ , bj) = 1.
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DFDS under translation A dynamic data structure for DFDS

A Link-Cut tree

We represent Gδ using the Link-Cut tree data structure:

Sleator and Tarjan (’83)

The Link-Cut tree data structure stores a set of rooted trees and supports
the following operations in O(log n) amortized time:

I Link(v , u) — connect a root v to another node u as its child.

I Cut(v) — disconnect the subtree rooted at v from its tree.

I FindRoot(v) — find the root of the tree to which v belongs.
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DFDS under translation A dynamic data structure for DFDS

The dynamic data structure for DFDS

I Switch σδ(ai , bj) from 1 to 0:
I remove the edge 〈(ai , bj), (ai , bj+1)〉 (Cut(ai , bj)).
I add the edge 〈(ai , bj), (ai+1, bj)〉 (Link((ai , bj), (ai+1, bj))).

I Switch σδ(ai , bj) from 0 to 1:
I remove the edge 〈(ai , bj), (ai+1, bj)〉 (Cut(ai , bj)).
I add the edge 〈(ai , bj), (ai , bj+1)〉 (Link((ai , bj), (ai , bj+1))).

I Reachability query: return TRUE if and only if
(i) σδ(a1, b1) = σδ(an, bm) = 1, and
(ii) FindRoot(a1, b1) is (ai , bm) for some 1 ≤ i ≤ n.

Theorem

Given sequences A and B with n and m points respectively in the plane,
d̂ s
dF (A,B) can be computed in O(m2n2 log2(m + n))-time.
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Translation in 1D d dimensions

Back to the algorithm of BKS

Assume the points of A and B are in Rd :

I The size of the arrangement of balls, Aδ, changes to O(mdnd).

I DFD: O(md+1nd(1 + log(n/m)) log(m + n)) (BKS data structure)

I DFDS: O(mdnd log2(m + n)) (our data structure)

I WDFD: O(mdnd log2(m + n)) (the data structure of Eppstein et al.)
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Translation in 1D d dimensions

A more direct approach for translation in Rd

A = (a1, . . . , an), B = (b1, . . . , bm) — points in Rd .
S(o, r) - the sphere with center o and radius r .

New indicator function:

σS(o,r)(ai , bj) =

{
1, d(ai − bj , o) ≤ r

0, otherwise

Lemma

Let S = S(t∗, δ) be a smallest sphere for which (an, bm) is a reachable

position w.r.t. σS . Then, d̂dF (A,B) = ddF (A,B + t∗) = δ.
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Translation in 1D d dimensions

Lemma

Let S = S(t∗, δ) be a smallest sphere for which (an, bm) is a reachable

position w.r.t. σS . Then, d̂dF (A,B) = ddF (A,B + t∗) = δ.

Proof.

I There exists a path P from (a1, b1) to (an, bm) in G , such that:
∀(a, b) ∈ P, d(a− b, t∗) ≤ δ.

I d(a− b, t∗) = d(a, b + t∗) ⇒ ddF (A,B + t∗) ≤ δ .

I Let t be a translation such that ddF (A,B + t) = δ′.

I There exist a path P from (a1, b1) to (an, bm) in G such that:
∀(a, b) ∈ P, d(a− b, t) = d(a, b + t) ≤ δ′.

I (an, bm) is a reachable position w.r.t. σS ′ , where S ′ = S(t, δ′).

I S is the smallest sphere for which (an, bm) is a reachable position

w.r.t. σS ⇒ δ′ ≥ δ .
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Translation in 1D d dimensions

Lemma
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Translation in 1D d dimensions

New goal: find the smallest sphere S for which (an, bm) is a reachable
position w.r.t. σS .

I For d > 1 dimensions: exhaustive search? no better running time...

I For d = 1, this leads to an improved result:
reduce a log(m + n) factor and avoid the parametric search.

I DFD: O(m2n(1 + log(n/m)))
I DFDS, WDFD: O(mn log(m + n))
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Translation in 1D 1 dimension

Translation in 1D

New indicator function: given a range [s, t],

σ[s,t](a, b) =

{
1, s ≤ a− b ≤ t

0, otherwise

s (a1 − b1) (an − bm) t

A range [s, t] is a feasible range if (an, bm) is a reachable position in G
w.r.t σ[s,t].
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s ≤ max{a− b | (a, b) ∈ P} ≤ min{a− b | (a, b) ∈ P} ≤ t).

Let D = {ai − bj | ai ∈ A, bj ∈ B}.

New goal: Find the smallest feasible range delimited by two points of D.
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Translation in 1D 1 dimension

Algorithm:

I Sort the values in D = {d1, . . . , dl} such that d1 < d2 < · · · < dl ,
where l = mn.

I Set p ← 1, q ← 1.

I While q ≤ l , if (an, bm) is a reachable position in G w.r.t. σ[dp ,dq ],
set p ← p + 1, else set q ← q + 1.

I Return the translation corresponding to the smallest feasible range
[dp, dq] that was found during the while loop.

d1 dl

p q

d2 d3

[dp, dq] is not a feasible range

d4
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I While q ≤ l , if (an, bm) is a reachable position in G w.r.t. σ[dp ,dq ],
set p ← p + 1, else set q ← q + 1.

I Return the translation corresponding to the smallest feasible range
[dp, dq] that was found during the while loop.

Theorem

Let A and B be two sequences of n and m points (m ≤ n), respectively, on

the line. Then, d̂dF (A,B) can be computed in O(m2n(1 + log(n/m)) time,

and d̂ s
dF (A,B) and d̂w

dF (A,B) can be computed in O(mn log(m + n)) time.
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A general scheme for BOP Definitions

Balanced Optimization Problem (on Graphs)

G = (V ,E ,w) – a weighted graph with n vertices and m edges.
F – a set of feasible subsets of E .

I F is a family of well-defined structures: matchings, paths, spanning
trees, cut-sets, edge covers, etc.

For S ⊆ E , let Smax = max{w(e) : e ∈ S} and Smin = min{w(e) : e ∈ S}.

Definition: BOP

Find a feasible subset S∗ ∈ F which minimizes Smax − Smin over all S ∈ F .

A range [l , u] is a feasible range if there exists a feasible subset S ∈ F
such that l ≤ Smin ≤ Smax ≤ u.

Goal: find the smallest feasible range.
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A general scheme for BOP Definitions

I Martello et al. (’84): a general optimization algorithm BOP:

I Given a feasibility decider that decides whether a subset is feasible or
not in f (l) time, their algorithm finds an optimal range in
O(lf (l) + l log l)-time.

I Especially useful when an efficient dynamic version of the feasibility
decider is available.

I We present an alternative scheme for BOP - does not require a
dynamic version of the feasibility decider.

d1 dl

p q

d2 d3

[dp, dq] is not a feasible range

d4
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A general scheme for BOP The matrix of ranges

The matrix of ranges

I Let w1 = w(e1) < w2 = w(e2) < · · · < wm = w(em).

I Let M be the matrix whose rows and columns correspond to
w1,w2, . . . ,wm.

I Cell Mi ,j ≡ Range [wi ,wj ].

w1 w2 wm. . .

...

wm
2

wm
2
. . .

...

wm

w1

w2

. . .wj
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A general scheme for BOP The matrix of ranges

I Mi ,j is contained in all the ranges Mi ′,j ′ with i ′ ≤ i ≤ j ≤ j ′.

I Perform a binary search in row m
2 to find the smallest feasible range

Mm
2
,j = [wm

2
,wj ] in this row.

I Mm
2
,j induces a partition of M into 4 submatrices: M1,M2,M3,M4

M3 M4

M1 M2

w1 w2 wm. . .

...

wm
2

wm
2
. . .

...

wm

w1

w2

. . .wj
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A general scheme for BOP The matrix of ranges

I None of the ranges in M1 is a feasible range.

I Each of the ranges in M4 is at least as large as Mm
2
,j .

⇒ We may ignore M1 and M4 and continue recursively with the
submatrices M2 and M3.
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A general scheme for BOP The algorithm

The algorithm

Each recursive call is associated with:
I a submatrix M ′ = M([p, p′]× [q′, q]) of M.
I a corresponding graph G ′ = G ([p, p′]× [q′, q]).

A recursive call has 2 steps:

1. Perform a binary search in the middle row of M ′ to find the
smallest feasible range in this row, using the corresponding graph G ′.

2. Construct two new graphs for the two submatrices of M ′ in which
we still need to search in the next level of the recursion.

The scheme requires the followings properties of G ′:

1. The size of G ′ is O(|M ′|).

2. Given G ′, the feasibility decider can answer a feasibility query for any
range in M ′, in O(f (|G ′|)) time.

3. Constructing the graphs for the next level takes O(|G ′|) time.
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A general scheme for BOP Running time

Running time

The recursion tree consists of O(logm) levels.
I The i ’th level is associated with 2i disjoint submatrices of M.
I In the i ’th level we apply the recursive algorithm to each of the 2i

submatrices associated with this level.

w1 w2 wm. . .

...

wm
2

wm
2
. . .

...

wm

w1

w2

. . .wj

I Let {M i
k}2i

k=1 be the submatrices associated with the i ’th level.
I Let G i

k be the graph corresponding to M i
k .
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A general scheme for BOP Running time

In each recursive call:

1. The size of G i
k is O(M i

k).

2. The feasibility decider runs in O(f (|G i
k |)) time ⇒

the binary search in M i
k runs in O(f (|M i

k |) log |M i
k |) time.

3. Constructing the graphs for the next level takes O(|M i
k |) time.

Lemma

The total size of the matrices in each level is at most 2m.

I The total time spent on the i ’th level is

O(
∑2i

k=1(|M i
k |+ f (|M i

k |) log |M i
k |))

= O(m + logm
∑2i

k=1 f (|M i
k |)).

I The running time of the entire algorithm is

O(m logm + logm
∑log m

i=1

∑2i

k=1 f (|M i
k |)).

if f (|M i
k |) = O(|M i

k |), then we get O(m log2 n).
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MUPP and WDFD under translation in 1D MUPP

The Most Uniform Path problem (MUPP)

G = (V ,E ,w) is a weighted graph with n vertices and m edges.

Definition: MUPP

Given two vertices s, t ∈ V , find a path P∗ in G between s and t, which
minimizes Pmax − Pmin, over all paths P between s and t.

I Introduced by Hansen et al. (’97): O(m2)-time algorithm.

I Observation: using a dynamic connectivity data structure for general
graphs of Holm et al.(’01) we can get O(m log2 n)-time algorithm.

I Our scheme: simpler algorithm with the same running time.
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MUPP and WDFD under translation in 1D MUPP

Applying our BOP scheme:

I A feasible subset S ∈ F is a path in G between s and t.

I Let E = {e1, . . . , em},
w1 = w(e1) < w2 = w(e2) < · · · < wm = w(em).

I The matrix for the initial call is M, and G is its associated graph.
I In a recursive call: Let M ′ be the submatrix and G ′ the graph

associated with it. Maintain the following properties of G ′:

1. The size of G ′ is at most O(|M ′|).
2. Given a range [wp,wq] in M ′, there exists a path between s and t in G ′

with edges in the range [wp,wq] if and only if such a path exists in G .
3. Constructing the graphs for the next level takes O(|G ′|) time.

I The feasibility decider: a BFS algorithm (which ignores edges
outside the given range) runs in O(|G ′|) time.
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MUPP and WDFD under translation in 1D MUPP

Construction of the graph G ′′ = G ([p, p′]× [q′, q]), given G ′:

1. Remove from G ′ all the edges e such that w(e) /∈ [wp,wq].

2. Contract edges with weights in the range (wp′ ,wq′).

3. Remove all the isolated vertices.

s

t

15

14

4

4
2

13
7

3

11
12

2

11

613
6

5

2

3

7

3

G′ = G([2, 7]× [10, 15])⇒ G′′ = G([3, 5]× [11, 13])

4

7

10

Running time: O(|G ′|).
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MUPP and WDFD under translation in 1D WDFD under translation in 1D

WDFD under translation in 1D

WDFD under translation in 1D can be viewed as BOP:
[s, t] is a feasible range ⇔
(an, bm) is a w-reachable position in Gw w.r.t. σ[s,t].

WDFD under translation in 1D is a special case of MUPP!
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MUPP ⇒ WDFD under translation in 1D

For MUPP we need a weighted graph G̃w = (Ṽw , Ẽw , ω)
Ṽw = (A× B) ∪ {ve | e ∈ Ew}, Ẽw = {(u, ve), (ve , v) | e = (u, v) ∈ Ew},
and ω(((ai , bj), ve)) = ai − bj .

a1

a2

a3

a4

a5

b1 b2 b3 b4 b5

⇒

a1

a2

a3

a4

a5

b1 b2 b3 b4 b5

Gw G̃w

(an, bm) is a w-reachable position in Gw w.r.t. σ[s,t] ⇔
there exists a path P̃ between (a1, b1) and (an, bm) in G̃w such that for
each edge e ∈ P̃, ω(e) ∈ [s, t].
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MUPP and WDFD under translation in 1D WDFD under translation in 1D

MUPP ⇒ WDFD under translation in 1D

MUPP between (a1, b1) and (an, bm) in G̃w ⇒
WDFD under translation in 1D.

Theorem

Let A = (a1, . . . , an) and B = (b1, . . . , bm) be two sequences of points in
1D. Then, the weak discrete Fréchet distance under translation,
d̂w
dF (A,B), can be computed in O(mn log2(m + n)) time.
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MUPP and WDFD under translation in 1D Bonus

The Most Uniform Spanning Tree problem (MUTP)

G = (V ,E ,w) is a weighted graph with n vertices and m edges.

Definition: MUTP

Find a spanning tree T ∗ of G , which minimizes Tmax − Tmin, over all
spanning trees T of G .

I Galil and Schieber (’88): O(m log n)-time algorithm for the
problem, using an involved dynamic data structure.

I Using our optimization scheme: O(m log2 n) time algorithm.

I A feasible subset S ∈ F is a spanning tree of G .
I The construction of G ′′: similar to the construction in MUPP.
I The feasibility decider: check that G ′ has a connected spanning

subgraph with edges in the given range.

Our algorithm: slower by a factor of log n, BUT does not require any
special data structures, and has easy and shorter description.
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Discussion

A new variant: The discrete Fréchet gap

Two frogs, two curves: A = (a1, ..., an), B = (b1, ..., bn).
Same rules: traverse all the points in order, no backtracking.

New indicator function: given a range [s, t],

σ[s,t](a, b) =

{
1, s ≤ d(a, b) ≤ t

0, otherwise

I The discrete Fréchet gap (dg
dF (A,B)) is the smallest range [s, t],

s ≥ t ≥ 0, for which (an, bm) is a reachable position w.r.t. σ[s,t].
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Discussion

Is this a better variant?

I Gives a better reflection of reality?

sometimes, but not always.

I Handling outliers? no.

(1) (2)

(3)

51 / 54



Discussion

Is this a better variant?

I Gives a better reflection of reality? sometimes, but not always.

I Handling outliers? no.

(1) (2)

(3)

51 / 54



Discussion

Is this a better variant?

I Gives a better reflection of reality? sometimes, but not always.

I Handling outliers? no.

51 / 54



Discussion

Let us combine gap and shortcuts...

A = (a1, ..., an), B = (b1, ..., bn), a leash of length δ.
Only the A-frog can skip points.

I The (one-sided) discrete Fréchet gap with shortcuts is the
smallest range [s, t], s ≥ t ≥ 0, for which (an, bm) is an s-reachable
position w.r.t. σ[s,t].

That seems to give better results!
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Discussion

What is between Gap and Translation?

Is there some connection between the discrete Fréchet gap and the
discrete Fréchet distance under translation?

(1) (2)

(3)

DFDS and WDFD, both in 1D under translation, are in some sense
analogous to their respective gap variants (in d dimensions and no
translation):

I We can use similar algorithms to compute them, but with different
indicator functions!
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Thank You!
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